Labiografia.com
 Menú Biográfico
» Inicio
» Añadir mi Biografia
» Modificar Biografía
» Las más Buscadas

 Busca Biografías



 Llamadas Internacionales
Llamadas Internacionales a Precios Muy Bajos !!!
Llamadas Internacionales
a Precios Muy Bajos

Click Aquí

 Abecedario
A B C D E F G H I
J K L M N O P Q R
S T U V W X Y Z #

 Estadísticas
 Biografías:49860
 Lecturas: 76115976
 Envios: 3187
 Votos: 3159447


 Última Votada
Jaume Cañellas Galindo
El Dr. Jaume Cañellas Galindo, nació en el barrio del “Poble Nou” en Barcelona (Espa...

Biografia de Andréi Andréievich Markov

Dirección: https://www.labiografia.com/ver_biografia.php?id=14661

Lecturas: 1387 : Envios: 0 : Votos: 82 : Valoración: 5.87: Pon tu Voto


HistoriaAndréi Andréievich Markov (1856-1922) Historia
1 Un visitante nos comenta

Matemático ruso, nacido en Riazán y fallecido en Petrogrado (actual San Petersburgo). Fue profesor de la Universidad de San Petersburgo en 1886 y elegido miembro de la Academia Rusa de Ciencias en 1896. En una primera época estuvo dedicado al estudio de las fracciones continuas, los límites de las integrales, la teoría de aproximación y las series de convergencia, para centrar luego su investigación en el cálculo de probabilidades y en los procesos en cadena que llevan su nombre y que tanta utilidad han tenido en el campo de la biología y las ciencias sociales, y particularmente en la lingüística y la hermenéutica, así como en la teoría moderna de las variables aleatorias.El llamado Proceso de Markov es una familia de variables aleatorias en la cual la distribución de cada variable depende de la distribución de otra u otras variables cronológicamente anteriores en la familia.Por ejemplo, si sobre una variable aleatoria n-dimensional se efectúan observaciones en los instantes t1, t2, ..., tn, se obtiene la familia {x(t1), x(t2), ..., x(tn)}. Se considera que x(t) es una función aleatoria definida si a cada conjunto (t1, t2, ..., tn) le corresponde una variable n-dimensional {x(t1), x(t2), ..., x(tn)} con distribución de probabilidades conocida y función de distribución consistente. En el caso de que la distribución de x(t) dependa de x(t1), la función aleatoria constituye un proceso de Markov simple; si depende de x(t1) y de x(t2) es un proceso de Markov doble, etc.Puede considerarse ahora que un experimento tiene un universo finito de resultados E1, Ei, ..., Ej, ..., Em, a los que se denomina estados. En un proceso de Markov simple se representa con Pi0 a la probabilidad de que se presente Ei en la primera prueba, y con Pij a la probabilidad de que se presente Ei en una prueba cuando se ha presentado Ej en la prueba anterior.


Si conoces algún dato más de la Biografia de Andréi Andréievich Markov, por favor haz click aquí y añade los datos que sepas sobre esta biografía para poder seguir mejorando y ofreciendo mejores resultados en el mayor buscador de biografías de Internet.



   PUBLICIDAD 
   Recomendamos 
Webmaster, pon el buscador de biografias en tu web.

Al visitar estas páginas, acepta los Términos y Condiciones de nuestros servicios y es mayor de edad.